Э.В. Девятов

Необычные магнонные моды в топологических полуметаллах

По материалам статей: 1) Phys. Rev. B 101, 155309 (2020) 2) Journal of Magnetism and Magnetic Materials , 540, 168488 (2021) 3) EPL, 127, 57002 (2019)

Авторы

Н.Н. Орлова, снс ИФТТ РАН

О.О Швецов, В.Д. Есин, мнс ИФТТ РАН

Н.Н. Колесников, зам директораА.В. Тимонина, снс ИФТТ РАН

06/27/22

Topological semimetals

Annu. Rev. Condens. Matter Phys. 8, 337-354 (2017)

3

FIG. 2. (Color online) (a) Giant anomalous Hall effect, which confirms⁸ high quality of our kagome-lattice semimetal $Co_3Sn_2S_2$ samples^{8,9}. The Hall resistance R_{xy} demonstrates hysteresis behavior and sharp switchings at ≈ 0.5 T. Arrows indicate the scanning directions. (b) Positive, nonsaturating longitudinal magnetoresistance in normal magnetic field, which is a hallmark of compensated semimetals^{8,9}. The measurements are performed at 4.2 K.

Поверхностный транспорт — аномальный эффект Холла (происхождение аналогично квантовому эффекту Холла, метрология).

Spin-momentum locking спиновые эффекты в поверхностном транспорте ?

Spin torque: Electric field assisted magnetization dynamics

Fig. 6. Schematic experimental geometries.

Differential resistance peaks were considered to be closely connected to the phenomenology of the giant magnetoresistance. At large positive current biases, spin-torque may overcome damping and anisotropy effects, which destabilizes the mutual orientation of the magnetic moments in the two layers, leading to dynamical precession, i.e. to spin-wave instabilities. The peak in dV/dI corresponds to a rounded step up in the dc resistance with increasing bias, which **reflects spin-wave-associated deviation in the relative orientation of the two magnetic layers**.

Spin-orbit torque in topological semimetals

(i) Ferromagnetic bulk in magnetic Weyl semimetals takes a role of a free layer, where spinwave exitations can be induced by spin-polarized current.

(ii) Spin-orbit coupling serves as a source of polarized spins instead of the fixed reference Layer due to the spin polarization within the topological surface states.

One should expect pronounced dependence on the direction (in-plane or normal) of the magnetic field.

Samples: Weyl semimetal (Phys. Rev. B 2020)

I-V curves for different samples (Phys. Rev. B 2020)

dV /dI(I) curves for transport across Au-Ti2MnAl interface for two opposite current sweep directions.

The right inset demonstrates similar dV /dI(I) behavior for Ni-WTe2 interface.

Magnetic field dependence (Phys. Rev. B 2020)

FIG. 4. (Color online) Evolution of dV/dI peaks' positions for Au-Ti₂MnAl junction for parallel (a) and normal (b) to the

9

06/27/22

peak position I_{sw} is described by Slonczewski model [26,41]. Slightly simplified,

$$I_{sw}(B) \sim \alpha \gamma e \sigma B, \tag{1}$$

where α is the damping parameter, γ is the gyromagnetic ratio, σ is the total spin of the free layer.

In multilayers the total spin σ is a constant due to the monodomain regime of low-size structures, so *Isw* is linearly increasing with the magnetic field *B*.

In contrast, the size of ferromagnetic domains is typically much smaller than the 5 μ m distance between the leads in our samples. Thus, the domain walls determine the total spin σ in our case.

Increasing of the magnetic field removes domain walls between the leads, so σ goes to zero in higher fields.

Magnetic field dependence for monodomain Weyl semimetal Co3Sn2S2 (EPL 2019)

Symmetry breaking: CoSi chiral semimetal (JMMM 2021)

Chiral topological semimetals are the natural generalization of Weyl semimetals, they are characterized by simultaneously broken mirror and inversion symmetries.

^{06/27/22}

Symmetry breaking: Полярный металл

- PHYSICAL REVIEW B 104, 045304 (2021)
- JETP Letters, 2021, Vol. 113, No. 6, pp. 389–395
- EPL, 135 (2021) 37002

Сверхпроводящий ферроэлектрик? (предсказан 2022г https://arxiv.org/abs/2201.01775)

Conclusions

Мы экспериментально сравнили несколько типов интерфейсных структур с магнитными и немагнитными Вейлевскими полуметаллами.

Мы исследовали спин-поляризованный транспорт через поверхность Вейлевского полуметалла. При этом было показано качественно схожее поведение: гистерезис на вольт-амперных кривых при малых токах и резкие пики в дифференциальном сопротивлении при больших токах.

Такое поведение напоминает динамику намагниченности, вызванную протекающим током, для ферромагнитных мультислоёв (спиновый диод), однако. эволюция мгнонных пиков при изменении магнитного поля происходит иначе, чем в ферромагнитных мультислоях.

Мы связываем полученные эффекты со вызванной током спиновой динамикой в поверхностном состоянии Вейлевского полуметалла.